Copied to
clipboard

G = C7×C42.3C4order 448 = 26·7

Direct product of C7 and C42.3C4

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C7×C42.3C4, C42.3C28, (C4×C28).6C4, C4⋊Q8.3C14, (C2×C28).20D4, (C2×Q8).3C28, (Q8×C14).6C4, C4.10D4.C14, C14.37(C23⋊C4), (Q8×C14).156C22, (C2×C4).4(C7×D4), (C2×C4).4(C2×C28), (C7×C4⋊Q8).18C2, (C2×C28).15(C2×C4), C2.11(C7×C23⋊C4), (C2×Q8).2(C2×C14), (C7×C4.10D4).2C2, C22.15(C7×C22⋊C4), (C2×C14).78(C22⋊C4), SmallGroup(448,160)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C7×C42.3C4
C1C2C22C2×C4C2×Q8Q8×C14C7×C4.10D4 — C7×C42.3C4
C1C2C22C2×C4 — C7×C42.3C4
C1C14C2×C14Q8×C14 — C7×C42.3C4

Generators and relations for C7×C42.3C4
 G = < a,b,c,d | a7=b4=c4=1, d4=c2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c, dcd-1=b2c >

Subgroups: 114 in 60 conjugacy classes, 26 normal (18 characteristic)
C1, C2, C2, C4, C22, C7, C8, C2×C4, C2×C4, C2×C4, Q8, C14, C14, C42, C4⋊C4, M4(2), C2×Q8, C28, C2×C14, C4.10D4, C4⋊Q8, C56, C2×C28, C2×C28, C2×C28, C7×Q8, C42.3C4, C4×C28, C7×C4⋊C4, C7×M4(2), Q8×C14, C7×C4.10D4, C7×C4⋊Q8, C7×C42.3C4
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C14, C22⋊C4, C28, C2×C14, C23⋊C4, C2×C28, C7×D4, C42.3C4, C7×C22⋊C4, C7×C23⋊C4, C7×C42.3C4

Smallest permutation representation of C7×C42.3C4
On 112 points
Generators in S112
(1 14 71 87 31 79 23)(2 15 72 88 32 80 24)(3 16 65 81 25 73 17)(4 9 66 82 26 74 18)(5 10 67 83 27 75 19)(6 11 68 84 28 76 20)(7 12 69 85 29 77 21)(8 13 70 86 30 78 22)(33 61 105 49 97 41 89)(34 62 106 50 98 42 90)(35 63 107 51 99 43 91)(36 64 108 52 100 44 92)(37 57 109 53 101 45 93)(38 58 110 54 102 46 94)(39 59 111 55 103 47 95)(40 60 112 56 104 48 96)
(1 5)(2 36 6 40)(3 7)(4 34 8 38)(9 62 13 58)(10 14)(11 60 15 64)(12 16)(17 21)(18 90 22 94)(19 23)(20 96 24 92)(25 29)(26 98 30 102)(27 31)(28 104 32 100)(33 37)(35 39)(41 45)(42 78 46 74)(43 47)(44 76 48 80)(49 53)(50 86 54 82)(51 55)(52 84 56 88)(57 61)(59 63)(65 69)(66 106 70 110)(67 71)(68 112 72 108)(73 77)(75 79)(81 85)(83 87)(89 93)(91 95)(97 101)(99 103)(105 109)(107 111)
(1 39 5 35)(2 40 6 36)(3 37 7 33)(4 38 8 34)(9 58 13 62)(10 63 14 59)(11 64 15 60)(12 61 16 57)(17 93 21 89)(18 94 22 90)(19 91 23 95)(20 92 24 96)(25 101 29 97)(26 102 30 98)(27 99 31 103)(28 100 32 104)(41 73 45 77)(42 74 46 78)(43 79 47 75)(44 80 48 76)(49 81 53 85)(50 82 54 86)(51 87 55 83)(52 88 56 84)(65 109 69 105)(66 110 70 106)(67 107 71 111)(68 108 72 112)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,14,71,87,31,79,23)(2,15,72,88,32,80,24)(3,16,65,81,25,73,17)(4,9,66,82,26,74,18)(5,10,67,83,27,75,19)(6,11,68,84,28,76,20)(7,12,69,85,29,77,21)(8,13,70,86,30,78,22)(33,61,105,49,97,41,89)(34,62,106,50,98,42,90)(35,63,107,51,99,43,91)(36,64,108,52,100,44,92)(37,57,109,53,101,45,93)(38,58,110,54,102,46,94)(39,59,111,55,103,47,95)(40,60,112,56,104,48,96), (1,5)(2,36,6,40)(3,7)(4,34,8,38)(9,62,13,58)(10,14)(11,60,15,64)(12,16)(17,21)(18,90,22,94)(19,23)(20,96,24,92)(25,29)(26,98,30,102)(27,31)(28,104,32,100)(33,37)(35,39)(41,45)(42,78,46,74)(43,47)(44,76,48,80)(49,53)(50,86,54,82)(51,55)(52,84,56,88)(57,61)(59,63)(65,69)(66,106,70,110)(67,71)(68,112,72,108)(73,77)(75,79)(81,85)(83,87)(89,93)(91,95)(97,101)(99,103)(105,109)(107,111), (1,39,5,35)(2,40,6,36)(3,37,7,33)(4,38,8,34)(9,58,13,62)(10,63,14,59)(11,64,15,60)(12,61,16,57)(17,93,21,89)(18,94,22,90)(19,91,23,95)(20,92,24,96)(25,101,29,97)(26,102,30,98)(27,99,31,103)(28,100,32,104)(41,73,45,77)(42,74,46,78)(43,79,47,75)(44,80,48,76)(49,81,53,85)(50,82,54,86)(51,87,55,83)(52,88,56,84)(65,109,69,105)(66,110,70,106)(67,107,71,111)(68,108,72,112), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)>;

G:=Group( (1,14,71,87,31,79,23)(2,15,72,88,32,80,24)(3,16,65,81,25,73,17)(4,9,66,82,26,74,18)(5,10,67,83,27,75,19)(6,11,68,84,28,76,20)(7,12,69,85,29,77,21)(8,13,70,86,30,78,22)(33,61,105,49,97,41,89)(34,62,106,50,98,42,90)(35,63,107,51,99,43,91)(36,64,108,52,100,44,92)(37,57,109,53,101,45,93)(38,58,110,54,102,46,94)(39,59,111,55,103,47,95)(40,60,112,56,104,48,96), (1,5)(2,36,6,40)(3,7)(4,34,8,38)(9,62,13,58)(10,14)(11,60,15,64)(12,16)(17,21)(18,90,22,94)(19,23)(20,96,24,92)(25,29)(26,98,30,102)(27,31)(28,104,32,100)(33,37)(35,39)(41,45)(42,78,46,74)(43,47)(44,76,48,80)(49,53)(50,86,54,82)(51,55)(52,84,56,88)(57,61)(59,63)(65,69)(66,106,70,110)(67,71)(68,112,72,108)(73,77)(75,79)(81,85)(83,87)(89,93)(91,95)(97,101)(99,103)(105,109)(107,111), (1,39,5,35)(2,40,6,36)(3,37,7,33)(4,38,8,34)(9,58,13,62)(10,63,14,59)(11,64,15,60)(12,61,16,57)(17,93,21,89)(18,94,22,90)(19,91,23,95)(20,92,24,96)(25,101,29,97)(26,102,30,98)(27,99,31,103)(28,100,32,104)(41,73,45,77)(42,74,46,78)(43,79,47,75)(44,80,48,76)(49,81,53,85)(50,82,54,86)(51,87,55,83)(52,88,56,84)(65,109,69,105)(66,110,70,106)(67,107,71,111)(68,108,72,112), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,14,71,87,31,79,23),(2,15,72,88,32,80,24),(3,16,65,81,25,73,17),(4,9,66,82,26,74,18),(5,10,67,83,27,75,19),(6,11,68,84,28,76,20),(7,12,69,85,29,77,21),(8,13,70,86,30,78,22),(33,61,105,49,97,41,89),(34,62,106,50,98,42,90),(35,63,107,51,99,43,91),(36,64,108,52,100,44,92),(37,57,109,53,101,45,93),(38,58,110,54,102,46,94),(39,59,111,55,103,47,95),(40,60,112,56,104,48,96)], [(1,5),(2,36,6,40),(3,7),(4,34,8,38),(9,62,13,58),(10,14),(11,60,15,64),(12,16),(17,21),(18,90,22,94),(19,23),(20,96,24,92),(25,29),(26,98,30,102),(27,31),(28,104,32,100),(33,37),(35,39),(41,45),(42,78,46,74),(43,47),(44,76,48,80),(49,53),(50,86,54,82),(51,55),(52,84,56,88),(57,61),(59,63),(65,69),(66,106,70,110),(67,71),(68,112,72,108),(73,77),(75,79),(81,85),(83,87),(89,93),(91,95),(97,101),(99,103),(105,109),(107,111)], [(1,39,5,35),(2,40,6,36),(3,37,7,33),(4,38,8,34),(9,58,13,62),(10,63,14,59),(11,64,15,60),(12,61,16,57),(17,93,21,89),(18,94,22,90),(19,91,23,95),(20,92,24,96),(25,101,29,97),(26,102,30,98),(27,99,31,103),(28,100,32,104),(41,73,45,77),(42,74,46,78),(43,79,47,75),(44,80,48,76),(49,81,53,85),(50,82,54,86),(51,87,55,83),(52,88,56,84),(65,109,69,105),(66,110,70,106),(67,107,71,111),(68,108,72,112)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)]])

91 conjugacy classes

class 1 2A2B4A···4E4F7A···7F8A8B8C8D14A···14F14G···14L28A···28AD28AE···28AJ56A···56X
order1224···447···7888814···1414···1428···2828···2856···56
size1124···481···188881···12···24···48···88···8

91 irreducible representations

dim1111111111224444
type+++++-
imageC1C2C2C4C4C7C14C14C28C28D4C7×D4C23⋊C4C42.3C4C7×C23⋊C4C7×C42.3C4
kernelC7×C42.3C4C7×C4.10D4C7×C4⋊Q8C4×C28Q8×C14C42.3C4C4.10D4C4⋊Q8C42C2×Q8C2×C28C2×C4C14C7C2C1
# reps121226126121221212612

Matrix representation of C7×C42.3C4 in GL4(𝔽113) generated by

16000
01600
00160
00016
,
112000
011200
009760
008816
,
976000
881600
001653
002597
,
0010
0001
111200
211200
G:=sub<GL(4,GF(113))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[112,0,0,0,0,112,0,0,0,0,97,88,0,0,60,16],[97,88,0,0,60,16,0,0,0,0,16,25,0,0,53,97],[0,0,1,2,0,0,112,112,1,0,0,0,0,1,0,0] >;

C7×C42.3C4 in GAP, Magma, Sage, TeX

C_7\times C_4^2._3C_4
% in TeX

G:=Group("C7xC4^2.3C4");
// GroupNames label

G:=SmallGroup(448,160);
// by ID

G=gap.SmallGroup(448,160);
# by ID

G:=PCGroup([7,-2,-2,-7,-2,-2,-2,-2,392,421,1576,3923,3538,248,6871,375,172,14117]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=c^4=1,d^4=c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c,d*c*d^-1=b^2*c>;
// generators/relations

׿
×
𝔽